Kappa opioid receptors regulate stress-induced cocaine-seeking and synaptic plasticity

Graziane N, Polter A, Briand LA, Pierce RC, Kauer JA

Neuron, 77:942-954

Stress facilitates reinstatement of addictive drug seeking in animals and promotes relapse in humans. Acute stress has marked and long-lasting effects on plasticity at both inhibitory and excitatory synapses on dopamine neurons in the ventral tegmental area (VTA), a key region necessary for drug reinforcement. Stress blocks long-term potentiation at GABAergic synapses on dopamine neurons in the VTA (LTPGABA), potentially removing a normal brake on activity. Here we show that blocking kappa opioid receptors (KORs) prior to forced-swim stress rescues LTPGABA. In contrast, blocking KORs does not prevent stress-induced potentiation of excitatory synapses nor morphine-induced block of LTPGABA. Using a kappa receptor antagonist as a selective tool to test the role of LTPGABA in vivo, we find that blocking KORs within the VTA prior to forced-swim stress prevents reinstatement of cocaine seeking. These results suggest that KORs may represent a useful therapeutic target for treatment of stress-triggered relapse in substance abuse.